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ABSTRACT 
In some cases, crossing-based target selection motion may gain a less error rates and a higher 
interactive speed. Most of the research in target selection fields focused on the analysis of interaction 
results. Moreover, trajectories play a much more important role in crossing-based target selection 
comparing to the other interactive techniques. And an ideal model for trajectories may help computer 
designers make predictions about interaction results during the process of target selection rather than 
at the end of the whole process. We proposed a trajectory prediction model for crossing-based target 
selection tasks referring to dynamic model theory. Simulation results show that our model performed 
well in the prediction of the trajectories, endpoints and the hitting time for target-selection motion, 
and the average error of trajectories, endpoints and hitting time values as 17.28%, 18.17 pixel and 
11.50%.1 
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INTRODUCTION 

Target selection has found notable interest in the human-computer interaction (HCI) community. In 
some cases, crossing-based selection can achieve a higher efficient comparing with conventional 
interactive techniques, for example, crossing-based selection reach a less error rates and a higher 
interactive speed for continuous crossing task with direction constraint. In the prior study, selecting 
targets by crossing a boundary “goal” instead of pointing inside targets has already been 
systematically investigated. However, most of the research on target selection lies in the analysis of 
interaction results—the endpoints of trajectory. Only a few researchers focused on the analysis of 
trajectories in the HCI community. A good understanding of the trajectories of target selection is 
important as it can provide insight and guidance on the effects of practice on performance, rational 
decision-making, and layout design in these user interfaces [1]. An ideal model for the whole target-
selection motion process may help computer designers make predictions about interaction results 
during the process of selection target rather than at the end of the whole process. It is a much more 
challenging job to predict trajectory for crossing-based selection. The main concern is that users 
prefer to choose the longer side to cross the target due to the targets are stick-like rectangles. The 
main impact on trajectory is the bending of the path. As a result, the existing trajectory prediction 
model could not predict the trajectory for crossing-based selection well due to the lack of adequate 
thinking about the shape of target. Moreover, it is a challenging work to simulate the bending of 
trajectories. Feedback control models and dynamic models are usually used to simulate the motion 
process. All models quantities the places and velocity at every moment according to the control 
signal dynamically adjusted by the position and velocity feedback. Referring to the same core ideas 
of the prior models and correlation theories of dynamic models, our work contributes new model for 
crossing-based interaction techniques. Through the simulation results, we find that our model 
achieved a satisfied simulation results on trajectory similarity, endpoints and time fitting. 

RELATED WORK 
Crossing-based Target Selection 
An early crossing-based selection experiment referring to a “goal passing task” was performed by 
Accot and Zhai, which laid the foundation for the Steering Law [2]. Apitz et al. named the six task 
conditions of indirect stylus input [3]. Luo and Vogel [4] summarized a generalizable and empirical 
support for application of crossing to touch input through the analysis of the six task conditions. 
However, among the basic research on target selection, most of the researchers focused on the study 
of duration and endpoints. 
Trajectory Prediction Model 
Besides the research lies in the endpoints analysis of target selection motion, there are a few works 
for the trajectories analysis. Huang et al. [5] built a target-selection motion model based on linear- 
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quadratic-Gaussian optimal feedback control (OFC) mechanism, their model can simulate trajectories 
of target selection tasks with no thought for fitting time. Quinn and Zhai [6] developed a production 
model which can predict users’ timing performance while typing using word-gesture keyboards. Due 
to its specific application scenario, some other information, such as semantic information, would be 
helpful to the model, and it may be not suitable for general target selection tasks.  
Dynamic models for reaching motion 
Dynamic models represent the behavior of an object over time. It is widely used in the fields of 
dynamics simulations. Yekutieli et al. [7] used a dynamic model to simulate the reaching movement 
of octopus arm. Tahara et al. [8] built a musculo-skeletal redundant arm model to simulate the motion 
of human arms. Unlike the motion of arms, process of target selection is a more microscopic motion 
with complex psychological functions. Even a slight force may lead to a huge shocks of trajectories. 
In our work, we contributed to build a dynamic micro-model referring to the conception of social 
force model (SFM) [9], and represent the behavior of the cursor over time using Newton’s Second 
Law to predict the moving trajectories in crossing-based target selection acquisition. 

TRAJECTORY PREDICTION MODEL 
To model crossing-based target selection motion, we build a mechanical model referring to the 
relevant dynamic models. We approximated the movement of the pointing devices by particle 
pushing with a controlled force, which can be formulated as Newton’s second law [10]. The main 
forces that effect the motion of particle 𝑝 will be introduced: 
Desired force 
In the process of moving towards a target, particle is willing to reach a moving destination with 
minimum velocity perturbation under user’s commands. Referring to SFM, we introduce the 
conception of desired direction and desired velocity. The particle 𝑝 of mass 𝑚௣ tends to move with a 
desired speed 𝑣௣

଴ into the moving target 𝛼 with a changeable direction vector 𝑒௣ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , and therefore 
the particle is likely to correspondingly adapt its actual velocity 𝑣ሺ𝑡ሻ with a relaxation time 𝜏௣. The 
desired force of the particle can be described by an acceleration term of the form 

𝑓଴ሺ𝑡ሻሬሬሬሬሬሬሬሬሬ⃗ ൌ ௩೛
బ ௘೛ഀሺ௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ି ௩ሺ௧ሻ

ఛ೛
. (1)

Inertial Losses 
At the front part of the trajectory, there unavoidably exists inertia which may influence the 
subsequent frames of motion trajectory at the state of an accelerated motion. The inertial action will 
decrease as the particle gradually approach to the target, this is because a comparably lower velocity 
is needed for users to selection the moving target. For this reason, we introduce a linear inertial losses 
function to simulate the phenomenon of inertial losses, it is given by 

𝑓ప௡௘௥௧௔௡௖௘ሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ൌ 𝑤௞ ௩೛
బ ௘೛ഀሺ௧ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ି ௩ሺ௧ሻ

ఛ೛
. (2)
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And the coefficient of inertial losses 𝑤௞ is 

𝑤௞ ൌ 𝑤௜௡௜ െ ௪೔೙೔ି௪೐೙೏
ଶ௞೘ೌೣ

𝑘௧, (3)

where 𝑤௜௡௜ and 𝑤௘௡ௗ are system parameters, 𝑘௠௔௫ is the maximum number of trajectory’s frames, 𝑘௧ 
is the current frame of the motion process. 
Boundary force 
The particle also try to keep a certain distance from border of the screen. Users may feel 
uncomfortable as the stylus or fingers moving towards the boundary of the screen. Therefore, the 
boundary of the screen b evokes a repulsive effect that can be described by  

𝑓௣௕ሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ൌ ቂ𝐴 exp ቀ
௥೛್

஻
ቁቃ 𝑛௣௕ሬሬሬሬሬሬ⃗ , (4)

where 𝑛௣௕ሬሬሬሬሬሬ⃗  is the unit vector denotes the direction perpendicular to boundary, 𝑟௣௕ shows the distance 
between particle and boundary. 
Interactive force 
Crossing-based target selection has its specificity, the targets in this kind of interaction are stick- like 
rectangles, and users customarily choose the longer side to cross the target. In this case, we modify 
the general moving direction and the inserted angle towards target. Inspired by literature [11], we use 
angle to control the bending of the trajectory influenced by psychological factors. The intersection 
angle of moving direction between particle 𝑒௣ሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗  and target 𝑒ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗  is used as the reference standard. 
The intersection 𝜃௏ and the force to control moving direction are defined 

𝜃௩ ൌ൏ 𝑒௣ሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗ , 𝑒ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗ ൐, (5)

𝑓௩ሺ𝑡ሻሬሬሬሬሬሬሬሬሬ⃗ ൌ 𝐶 expሾ஽ ሺఏೇሻಶ ௥೛

ி
ሿ, (6)

Another reference intersection angle 𝜃௜ and the force to control inserted angle are given by  

𝜃௜ ൌ൏ 𝑒௣ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , 𝑛ఈ௢௥పሬሬሬሬሬሬሬሬሬ⃗ ൐, (7)

𝑓పሺ𝑡ሻሬሬሬሬሬሬሬሬ⃗ ൌ 𝐺 𝑒𝑥𝑝ሾு ሺఏ೔ሻ಺ ௥೛

ி
ሿ, (8)

where 𝑛ఈ௢௥పሬሬሬሬሬሬሬሬሬ⃗  is the normal vector of orientation of target, 𝑟௣ is the distance between target and particle. 
The model for crossing-based target selection motion is finally defined by 

𝑚௣
ௗ௩೛

ௗ௧
ൌ 𝑚௣𝑓଴ሺ𝑡ሻሬሬሬሬሬሬሬሬሬ⃗ ൅ 𝑓ప௡௘௥௧௔௡௖௘ሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ൅ 𝑓௣௕ሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ൅ 𝑓௩ሺ𝑡ሻሬሬሬሬሬሬሬሬሬ⃗ ൅ 𝑓పሺ𝑡ሻሬሬሬሬሬሬሬሬ⃗ . (9)

EXPERIMENTS AND SIMULATION 
Experiment Design 
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(a)Target with an orientation of 0° 

Ori = 90°
96 Pixels

960 Pixels

Dir 
V=192 

pixels/sec

 
(b)Target with an orientation of 90° 

Figure 1: Crossing-based selection task 

Table 1: Optimization Parameters 

Parameter Values 
A 1847.5 
B 1157.4 

C ቊെ2099.5, ൏ 𝑒௣ሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗  , 𝑒ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗ ൐൑ 𝜃௩
1916.1, 𝑒𝑙𝑠𝑒

D ቊെ0.4793, ൏ 𝑒௣ሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗  , 𝑒ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗ ൐൑ 𝜃௩
2.4787, 𝑒𝑙𝑠𝑒

E ቊ4.9962, ൏ 𝑒௣ሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗  , 𝑒ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬ⃗ ൐൑ 𝜃௩
4.8709, 𝑒𝑙𝑠𝑒

 

F 1220.3 

G ቊെ1282.4, ൏ 𝑒௣ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬሬሬ⃗  , 𝑛ఈ௢௥పሬሬሬሬሬሬሬሬሬሬ⃗ ൐൑ 𝜃௜
1231.8, 𝑒𝑙𝑠𝑒

H ቊ2.1322, ൏ 𝑒௣ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬሬሬ⃗  , 𝑛ఈ௢௥పሬሬሬሬሬሬሬሬሬሬ⃗ ൐൑ 𝜃௜
9.8106, 𝑒𝑙𝑠𝑒

  

I ቊ0.4991, ൏ 𝑒௣ఈሺ𝑡ሻሬሬሬሬሬሬሬሬሬሬሬሬ⃗  , 𝑛ఈ௢௥పሬሬሬሬሬሬሬሬሬሬ⃗ ൐൑ 𝜃௜
െ1.5923, 𝑒𝑙𝑠𝑒

  

𝑤௜௡௜ 0.9 
𝑤௘௡ௗ 0.7 

𝜃𝑣 0.1948 
𝜃𝑖 -0.1907 

To generate empirical data for estimating the parameters, we conducted a crossing-based selection 
task referring to the work of [9]. Participants used mouse to cross a moving target with 2 types of 
orientation (Ori), 8 types of the moving direction (Dir) width of 96 pixels and velocity of 192 
pixels/sec, the initial distance between target and start point is 960 pixels. The crossing tasks are 
illustrated in Figure 1. 
Participants 
We recruited 15 participants (8 females and 7 males, with an average age of 27.3) in this study. All of 
them are familiar with computer and stylus. We ran the experiment on a regular desktop computer 
with a 13.3 inches display at 1,920×1,080. The stylus was 15.4 cm in length, 9mm in diameter at the 
barrel, and 10 g in weight. 
Optimization Parameters 
System parameter set ሾ𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝑤௜௡௜, 𝑤௘௡ௗ, 𝜃௩, 𝜃௜ሿ is selected according to the model 
defined in Section 3, which may significantly affect the similarity between the real data and the 
simulated one. We defined the sum total Euler distance per frame as the cost function to estimate the 
similarity value. We developed a Genetic Algorithm to gain the most appropriate parameter set, and 
the population size was set 50, the optimized parameter set is shown in Table 1. 
Results of Endpoints 
The average errors of the mean endpoint is 18.17 pixels, the maximum errors of endpoint is 27.71 
pixels when Ori = 90°, Dir = 180°, while the minimum errors is 8.19 pixel when Ori = 90°, Dir = 45° 
Simulation Results of Trajectory 
To simulate a trajectory for task situation, we initialized the cursor at a mean state of  p଴ ൌ
 ሾ𝑝௫ሺ𝑡଴ሻ; 𝑝௬ሺ𝑡଴ሻ; 𝑝ሶ௫ሺ𝑡଴ሻ; 𝑝ሶ௬ሺ𝑡଴ሻ; 𝜏଴; 𝑣௣

଴ሿ, the moving target 𝛼’s position was set at pఈ଴ ൌ ሾ1120,540ሿ. 
Each simulation trial ended when the cursor hits the target or the target moving out of the screen.  
The comparison of trajectories between simulation and real data is shown in Figure 2. As we can see 
from Figs 2, simulation results show that our model works better when the orientation is 90°, the 
average error of the mean trajectory is 981 pixels (17.28 % of the overall variability). 
Results of Time Fitting 
The Time Fitting results are shown in Table 2. Simulation results show that time is partly well-fitted. 
The average errors variability is 11.50%, and gain minimum value when Ori = 90°, Dir = 0° at 2.95%. 
Discussion 
As we can see from Figure 2, the bending of trajectories and the intersection angle show that users 
may adjust their direction to ensure that the long side is the boundary they choose to cross. Therefore, 
the existing trajectory prediction model could not simulate the bending of the trajectory due to the 
lack of adequate thinking about the shape of target. Furthermore, when Ori = 90°, the motion 
direction is vertical to the long side of target and only minor adjustments are needed for users to cross 
the target in a comfortable way. 

CONCLUSIONS 
Based on dynamic models, we proposed a trajectory prediction model for crossing-based target 
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 Table 2: Comparison of Time fitting 

𝑂𝑟𝑖ሺ°ሻ 𝐷𝑖𝑟ሺ°ሻ ሺ𝑇௥ െ 𝑇௦ሻ/𝑇௥ሺ%ሻ 
0 -135 11.91 
0 -90 12.88 
0 -45 14.29 
0 0 15.28 
0 45 9.36 
0 90 19.69 
0 135 24.17 
0 180 20.99 
90 -135 10.91 
90 -90 9.42 
90 -45 6.16 
90 0 2.95 
90 45 4.54 
90 90 7.73 
90 135 7.22 
90 180 6.46 

selection. Experiments show that users prefer to select the long side of the target to cross. Simulation 
results show that our model performed well in the prediction of trajectories, endpoints and hitting 
time for crossing-based target selection. However, our model is still far from perfect. In the future, 
we will further analyze other parameters’ impact on crossing-based target selection. At the same time, 
some other influence forces could be added into our model, such as the motion uncertainty. Our work 
may provide new perspectives for understanding target selection motion and other HCI research. 
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